(1)^2+y^2=25

Simple and best practice solution for (1)^2+y^2=25 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (1)^2+y^2=25 equation:



(1)^2+y^2=25
We move all terms to the left:
(1)^2+y^2-(25)=0
determiningTheFunctionDomain y^2-25+1^2=0
We add all the numbers together, and all the variables
y^2-24=0
a = 1; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·1·(-24)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{6}}{2*1}=\frac{0-4\sqrt{6}}{2} =-\frac{4\sqrt{6}}{2} =-2\sqrt{6} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{6}}{2*1}=\frac{0+4\sqrt{6}}{2} =\frac{4\sqrt{6}}{2} =2\sqrt{6} $

See similar equations:

| (4)^2+y^2=25 | | 5n-5+4n+5=180 | | .9x+81=23x-87 | | 4g-37=35 | | (3)^2+y^2=25 | | 14−2m=4 | | (3)/(5)(2p+3)=(1)/(10)(5p+1) | | 4n-4=3n+6 | | (-4)^2+y^2=25 | | 3n+2n=180 | | 15+3g=72 | | 6(t+78)=-72 | | -4x+4=-11 | | 1+y^2=25 | | n+20+n=180 | | 83y=48 | | 5q^2-6q=4q^2-8q+15 | | -26=-24u | | -26=24u | | 15p+2=-10 | | 7(t-95)=35 | | 5m+1=7m-17 | | 4x+8=4x+ | | 0.2(10x+24)=3(0.2x+5) | | 15b=b | | 0.2(10x+24)=3(0.2x5) | | 3(n+5)+2n=90 | | -5x=24.5 | | 5=g+11/8 | | 48+n=90 | | 30=6/5m | | 5(t+7)=80 |

Equations solver categories